Zpět na hlavní stránku

Shodnost a podobnost


Podobnost

Konstrukce

Podobnost je geometrické zobrazení Euklidovského prostoru do sebe, které násobí všechny vzdálenosti stejným koeficientem, tzv. měřítkem podobnosti. Dva geometrické útvary v Euklidově prostoru jsou podobné , pokud oba mají přesně stejný tvar. Přesněji řečeno, jeden je shodný s útvarem, získaným jako výsledek rovnoměrného zmenšení či zvětšení druhého a jeho případné rotace, posunutí a zrcadlení. Nejjednodušším příkladem podobného zobrazení je stejnolehlost. Podobnost je speciálním případem afinity. Speciálním případem podobnosti, je-li koeficient podobnosti roven 1, je shodnost.

Poměr vzdálenosti dvou bodů daného geometrického útvaru a vzdálenosti odpovídajících dvou bodů jiného geometrického útvaru (referenčního) je u podobných útvarů shodný pro každou takovou dvojici bodů a nazývá se koeficient podobnosti. Podobnost zachovává velikost úhlů a poměr délek.

Podobnost v rovině

Pro rovinné útvary z toho vyplývá, že odpovídající hrany podobných mnohoúhelníků jsou ve vzájemném poměru a odpovídající úhly si jsou rovny.

Například všechny kružnice, čtverce a rovnostranné trojúhelníky si jsou podobné. Naopak elipsy si podobné být nemusí, stejně tak jako hyperboly.

Zpravidla se za speciální případ podobnosti považuje i shodnost, tedy podobnost s koeficientem podobnosti k = 1. Zpravidla se za speciální případ podobnosti považuje i shodnost, tedy podobnost s koeficientem podobnosti

Podobné trojúhelníky

Trojúhelníky △ABC a △DEF jsou podobné (píšeme △ABC ~ △DEF), pokud vyhoví jedné z následujících vět:

  1. Věta sss – Každé dva trojúhelníky, které mají sobě rovné poměry délek všech tří dvojic odpovídajících stran, jsou si podobné.
  2. Věta sus – Každé dva trojúhelníky, které mají sobě rovné poměry délek dvou odpovídajících stran a shodují se v úhlu jimi sevřeném, jsou si podobné.
  3. Věta uu – Každé dva trojúhelníky, které mají dva úhly stejné, jsou si podobné.
  4. Věta Ssu – Každé dva trojúhelníky, které mají sobě rovné poměry délek dvou odpovídajících stran a shodují se v úhlu naproti větší straně, jsou si podobné.

Podobné trojúhelníky jsou tedy takové, které mají stejný tvar, ale jinou velikost (tvar trojúhelníku je definován jeho úhly). Je to možné říci i tak, že jeden trojúhelník je zvětšením (či zmenšením) druhého.

Podobné mnohoúhelníky

Konstrukce

Tuto myšlenku je možné rozšířit na mnohoúhelníky s více stranami. U jakýchkoli dvou podobných mnohoúhelníků si jsou odpovídající strany přímo úměrné. Nicméně pouze úměrnost stran není dostatečná k zajištění podobnosti mnohoúhelníků kromě trojúhelníků, takže odpovídající úhly rovněž musí být shodné.

Shodné zobrazení (shodnost)

Shodné zobrazení je v geometrii takové zobrazení mezi Euklidovskými prostory, které zachovává vzdálenost.

Shodné zobrazení prostoru do sebe se nazývá shodnost.

V elementární školské geometrii se studují shodnosti v rovině a (trojrozměrném) prostoru.

Obecně se pro metrické prostory zavádí pojem izometrické zobrazení (izometrie).

Základní vlastnosti

Shodnosti v rovině

Druhy shodností

V rovině existují jenom následující druhy shodností:

Konstrukce










Konstrukce



















Konstrukce










Konstrukce










Konstrukce










Skládání shodností

Každou shodnost v rovině lze složit (různými způsoby) nejvýše ze třiosových souměrností. Obecně každou shodnost v n-rozměrném euklidovském prostoru lze složit nejvýše z (n+1) souměrností podle nadroviny (zrcadlení generují euklidovskou grupu).

Přímá a nepřímá shodnost

Při pokusech se zobrazením trojúhelníku v různých shodnostech si nelze nevšimnout jedné zajímavé věci - někdy jsou vrcholy obrazu trojúhelníku „pojmenovány“ ve stejném směru (například A,B,C po směru hodinových ručiček se zobrazí na A′,B′,C′ opět po směru hodinových ručiček), někdy naopak (vzor je A,B,C po směru, ale obraz je A′,B′,C′ proti směru). Mluvíme o zachování orientace a o shodném zobrazení zachovávajícím orientaci nebo naopak o změně orientace a o shodném zobrazení měnícím orientaci.

Shodnost zachovávající orientaci se nazývá přímá neboli přemístění. Shodnost měnící orientaci se nazývá nepřímá.

Každé přemístění v rovině lze složit (různými způsoby) ze dvou osových souměrností.

Shodnosti v prostoru

Druhy shodností

V prostoru existují jenom následující druhy shodností: